Graphing

Under Construction: Consider this content a preview of the real thing which is coming soon (hopefully).

graph LR
    classDef currentPage stroke:#333,stroke-width:4px

	ALG(["fas:fa-trophy Algorithmis fas:fa-trophy "])

	ASY_ANA(["fas:fa-check Asymptotic Analysis#160;"])
    click ASY_ANA "./math-asymptotic-analysis"

    

	MAT_NOT(["fas:fa-check Mathematical Notation#160;"])
    click MAT_NOT "./math-notation"

    

	POL(["fas:fa-check Polynomials #160;"])
    click POL "./math-polynomials"

    

	MAT_FUN(["fas:fa-check Math Functions#160;"])
    click MAT_FUN "./math-functions"

    

	LOG(["fas:fa-check Logarithms#160;"])
    click LOG "./math-logarithms"

    

	COM(["fas:fa-check Combinatorics#160;"])
    click COM "./math-combinatorics"

    

	SET_NOT(["fas:fa-check Set Notation#160;"])
    click SET_NOT "./math-set-notation"

    

	GRA(["fas:fa-check Graphing#160;"])
    click GRA "./math-graphing"

    
      class GRA currentPage
    

	BW(["fas:fa-check Bitwise Logic#160;"])
    click BW "./math-bitwise"

    

	MAT(["fas:fa-check Matrices#160;"])
    click MAT "./math-matrices"

    

	ASY_ANA-->ALG
	BW-->ALG
    MAT-->ALG
    COM & GRA & SET_NOT-->ASY_ANA
    MAT_NOT--> SET_NOT
    POL & LOG--> MAT_FUN
    MAT_FUN--> GRA

A function is representable as a curve in space where the vertical direction symbolizes the output and the horizontal direction symbolizes the input. The connection between polynomials as geometric objects and their algebraic properties is profound.

\[x^3 - x - 1\]

x^3 - x -1

Descartes graphical representation of polynomials